MCMC Algorithm for Conway-Maxwell-Poisson Regression Model for Multivariate Correlated Count Data
mcmc_cmp.Rd
MCMC Algorithm to estimate the parameters in the regression model for multivariate correlated count data
Usage
mcmc_cmp(
y,
X,
S = 10000,
nburn = 5000,
initial_beta,
initial_gamma,
initial_b,
prior_mean_beta,
prior_var_beta,
prior_mean_gamma,
prior_var_gamma,
v_0,
R_0,
intercept = FALSE,
scale_b,
scale_beta,
scale_gamma,
scale_cov_b,
scale_cov_beta,
scale_cov_gamma,
inc_burn = FALSE,
re_chain = TRUE,
progress = "acc_rates",
way = 2,
random_seed,
...
)
Arguments
- y
Matrix of observations
- X
Covariates list, each element is the design matrix for each column of y
- S
Number of MCMC samples to be drawn
- nburn
Number of MCMC samples to burn-in
- initial_beta
List with initial value of \(beta\) for each response
- initial_gamma
List with initial value of \(gamma\) for each response
- initial_b
Initital value of \(b\).
- prior_mean_beta
Prior mean for \(beta\). (Default zero vector)
- prior_var_beta
Prior covariance matrix for \(beta\) (Default \(I\))
- prior_mean_gamma
Prior mean for \(beta\). (Default zero vector)
- prior_var_gamma
Prior covariance matrix for \(gamma\) (Default \(I\))
- v_0
Prior degrees of freedom of random effects
- R_0
Prior covariance matrix of random effects
- intercept
Logical value indicating whether include the intercept
- scale_b
Covariance matrix for RW proposals of the random effects (Default \(I\))
- scale_beta
List with initial values for the scale matrices of \(beta\) (Default \(I\))
- scale_gamma
List with initial values for the scale matrices of \(gamma\) (Default \(I\))
- scale_cov_b
Scale parameter for the RW of random effects. (Default \(2.4/sqrt(2)\))
- scale_cov_beta
Scale parameter for the covariance of the proposals.
- scale_cov_gamma
Scale parameter for the covariance of the proposals.
- inc_burn
logical: include burned samples in the return
- re_chain
logical: If the posterior samples for the r.e are include. False return just the mean
- progress
output of algorithm: "acc_rates" update each 10 interactions the acceptance ratios, "bar" show a bar of progress
- way
How to calculate the MCMC updates, based on Chib (2001)
- random_seed
Random seed
- ...
Additional parameters of the MCMC algorithm
Value
A list:
- posterior_b
List with posterior values of the random effects
- estimation_beta
Estimation of beta parameters
- posterior_beta
List with posterior values of beta
- estimation_gamma
Estimation of gamma parameters
- posterior_gamma
List with posterior values of gamma
- posterior_D
Values of covariance matrix D
- fitted_mu
Posterior of location parameters for each response
- fitted_nu
Posterior of shape parameters for ecah response
- accept_rate_b
Acceptance rate of Random Effects
- accept_rate_beta
Acceptance rate of beta
- accept_rate_gamma
Acceptance rate of gamma
- scale_beta
Estimated Scale matrix for beta parameters
- scale_gamma
Estimated Scale matrix for gamma parameters
- X
List of covariates used
- y
Matrix of observed counts
Examples
if (FALSE) {
n = 50; J = 2
X = list(matrix(rnorm(3*n), ncol = 3), matrix(rnorm(3*n), ncol = 3))
beta <- list(c(1,0.1, 1), c(0, 0.5, -0.5))
mu <- exp(prod_list(X, beta))
y = matrix(rpois(n = length(mu), lambda = mu), nrow = n)
fit <- mcmc_cmp(y, X, S = 10000, nburn = 1000, scale_cov_b = 0.8,
scale_cov_beta = 0.04, scale_cov_gamma = 0.06)
}